Skip to content

Commit

Permalink
Script to rerun openai prompts on the same data
Browse files Browse the repository at this point in the history
  • Loading branch information
jakep-allenai committed Oct 1, 2024
1 parent f99f6a6 commit 8a66ece
Showing 1 changed file with 227 additions and 0 deletions.
227 changes: 227 additions & 0 deletions pdelfin/silver_data/convertsilver_openai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,227 @@
import argparse
import json
import re
from pathlib import Path
from concurrent.futures import ProcessPoolExecutor, as_completed
import sys
import logging

import smart_open

from pdelfin.prompts import build_finetuning_prompt


def setup_logging():
"""Configure logging for the script."""
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] %(levelname)s: %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)


def is_s3_path(path):
"""Check if the given path is an S3 path."""
return str(path).startswith('s3://')



def process_file(input_file: str, output_file: str, rewrite_prompt_str: bool):
"""
Process a single JSONL file: read, transform, and write to output.
Args:
input_file (str): Path or URL to the input JSONL file.
output_file (str): Path or URL to the output JSONL file.
"""
processed_count = 0
error_count = 0

try:
with smart_open.open(input_file, 'r', encoding='utf-8') as infile, \
smart_open.open(output_file, 'w', encoding='utf-8') as outfile:

for line_number, line in enumerate(infile, 1):
line = line.strip()
if not line:
continue # Skip empty lines
try:
obj = json.loads(line)
except json.JSONDecodeError as e:
logging.error(f"JSON decode error in file {input_file} at line {line_number}: {e}")
error_count += 1
continue


if obj is not None and rewrite_prompt_str:
pattern = r"RAW_TEXT_START\s*\n(.*?)\nRAW_TEXT_END"

# Use re.DOTALL to ensure that the dot matches newline characters
match = re.search(pattern, obj["body"]["messages"][0]["content"][0]["text"], re.DOTALL)

if match:
raw_page_text = match.group(1).strip()
from pdelfin.prompts import build_openai_silver_data_prompt
obj["body"]["messages"][0]["content"][0]["text"] = build_openai_silver_data_prompt(raw_page_text)

if obj is not None:
outfile.write(json.dumps(obj) + '\n')
processed_count += 1
else:
error_count += 1

logging.info(f"Processed '{input_file}': {processed_count} records transformed, {error_count} errors.")
except Exception as e:
logging.error(f"Failed to process file {input_file}: {e}")


def construct_output_file_path(input_file_path, input_dir, output_dir):
"""
Given an input file path, input directory, and output directory,
construct the corresponding output file path.
Args:
input_file_path (str): Path to the input file.
input_dir (str): Path to the input directory.
output_dir (str): Path to the output directory.
Returns:
str: Path to the output file.
"""
input_file = Path(input_file_path)

if is_s3_path(input_dir):
# For S3 paths, manually construct the relative path based on the input S3 path
input_prefix = input_dir.split('s3://')[1]
input_prefix = input_prefix.rstrip('*') # Remove any glob patterns like *.jsonl

# Remove the 's3://' part from input_file_path and extract the relative part
input_file_key = input_file_path.split('s3://')[1]
relative_path = input_file_key[len(input_prefix):].lstrip('/')

# Construct the output S3 path by appending the relative part to the output S3 directory
output_file_path = output_dir.rstrip('/') + '/' + relative_path

else:
# For local paths, use the existing relative path logic
input_dir_path = Path(input_dir)
relative_path = input_file.relative_to(input_dir_path)
output_file_path = str(Path(output_dir) / relative_path)

return output_file_path


def list_input_files(input_dir):
"""
List all JSONL files in the input directory. If input_dir is an S3 path, handle
globbing manually by listing objects and filtering based on patterns.
Args:
input_dir (str): Path to the input directory or S3 URL.
Returns:
list: List of input file paths.
"""
if is_s3_path(input_dir):
# Use smart_open's s3 functionality to list files
import boto3
import fnmatch

# Parse bucket and prefix
bucket_name = input_dir.split('s3://')[1].split('/')[0]
path_and_pattern = '/'.join(input_dir.split('s3://')[1].split('/')[1:])

# Separate the prefix and pattern
if '/' in path_and_pattern:
prefix = path_and_pattern.rsplit('/', 1)[0] + '/'
pattern = path_and_pattern.rsplit('/', 1)[1]
else:
prefix = ''
pattern = path_and_pattern

# Set up S3 resource and bucket
s3 = boto3.resource('s3')
bucket = s3.Bucket(bucket_name)

# Get all objects and filter them manually based on the pattern
files = []
for obj in bucket.objects.filter(Prefix=prefix):
if fnmatch.fnmatch(obj.key, f'{prefix}{pattern}'):
files.append(f's3://{bucket_name}/{obj.key}')

return files
else:
# Local path handling (with glob pattern)
input_dir_path = Path(input_dir)
return [str(p) for p in input_dir_path.glob('*.jsonl')]


def main():
setup_logging()
parser = argparse.ArgumentParser(
description="Transform JSONL files by extracting and renaming specific fields."
)
parser.add_argument(
'--rewrite_finetuning_prompt',
action='store_true',
default=False,
help="Rewrites the input prompt from standard OPENAI instruction format into our finetuned format"
)
parser.add_argument(
'input_dir',
type=str,
help='Path to the input directory containing JSONL files. Can be a local path or S3 URL.'
)
parser.add_argument(
'output_dir',
type=str,
help='Path to the output directory where transformed JSONL files will be saved. Can be a local path or S3 URL.'
)
parser.add_argument(
'--jobs', '-j',
type=int,
default=20,
help='Number of parallel jobs to run (default: 20).'
)
args = parser.parse_args()

input_dir = args.input_dir.rstrip('/')
output_dir = args.output_dir.rstrip('/')
max_jobs = args.jobs

# List input files
input_files = list_input_files(input_dir)

if not input_files:
logging.warning(f"No JSONL files found in '{input_dir}'. Exiting.")
sys.exit(0)

logging.info(f"Found {len(input_files)} JSONL files to process.")

# Prepare tasks for parallel processing
tasks = []
for input_file in input_files:
output_file = construct_output_file_path(input_file, input_dir, output_dir)
tasks.append((input_file, output_file))

# Process files in parallel
with ProcessPoolExecutor(max_workers=max_jobs) as executor:
future_to_file = {
executor.submit(process_file, input_file, output_file, args.rewrite_finetuning_prompt): input_file
for input_file, output_file in tasks
}

for future in as_completed(future_to_file):
input_file = future_to_file[future]
try:
future.result()
except Exception as exc:
logging.error(f"File {input_file} generated an exception: {exc}")

logging.info("All files have been processed.")


if __name__ == "__main__":
main()

0 comments on commit 8a66ece

Please sign in to comment.