Skip to content

Commit

Permalink
New send silver script for testing
Browse files Browse the repository at this point in the history
  • Loading branch information
jakep-allenai committed Oct 4, 2024
1 parent 6e1094e commit e87729a
Showing 1 changed file with 188 additions and 0 deletions.
188 changes: 188 additions & 0 deletions pdelfin/silver_data/sendsilver2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
# Sends list of batch files to OpenAI for processing
# However, it also waits and gets the files when they are done, saves its state, and
# allows you to submit more than the 100GB of file request limits that the openaiAPI has
import os
import time
import json
import datetime
import argparse
from enum import Enum
from openai import OpenAI
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed

# Set up OpenAI client (API key should be set in the environment)
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

MAX_OPENAI_DISK_SPACE = 100 * 1024 * 1024 * 1024 # Max is 100GB on openAI
UPLOAD_STATE_FILENAME = "SENDSILVER_DATA"

# Function to upload a file to OpenAI and start batch processing
def upload_and_start_batch(file_path):
try:
# Upload the file to OpenAI
with open(file_path, 'rb') as file:
print(f"Uploading {file_path} to OpenAI Batch API...")
upload_response = client.files.create(file=file, purpose="batch")
file_id = upload_response.id
print(f"File uploaded successfully: {file_id}")

# Create a batch job
print(f"Creating batch job for {file_path}...")
batch_response = client.batches.create(
input_file_id=file_id,
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={
"description": "pdf gold/silver data"
}
)

batch_id = batch_response.id
print(f"Batch created successfully: {batch_id}")
return batch_id

except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
return None


def download_batch_result(batch_id, output_folder):
# Retrieve the batch result from OpenAI API
batch_data = client.batches.retrieve(batch_id)

if batch_data.status != "completed":
print(f"WARNING: {batch_id} is not completed, status: {batch_data.status}")
return batch_id, False

file_response = client.files.content(batch_data.output_file_id)

# Define output file path
output_file = os.path.join(output_folder, f"{batch_id}.json")

# Save the result to a file
with open(output_file, 'w') as f:
f.write(str(file_response.text))

return batch_id, True




ALL_STATES = ["init", "processing", "completed", "errored_out", "could_not_upload"]
FINISHED_STATES = [ "completed", "errored_out" ]


def get_state(folder_path: str) -> dict:
state_file = os.path.join(folder_path, UPLOAD_STATE_FILENAME)

if os.path.exists(state_file):
with open(state_file, "r") as f:
return json.load(f)
else:
# List all .jsonl files in the specified folder
jsonl_files = [f for f in os.listdir(folder_path) if f.endswith('.jsonl')]

if not jsonl_files:
raise Exception("No JSONL files found to process")

state = {f:
{
"filename": f,
"batch_id": None,
"state": "init",
"size": os.path.getsize(f),
"last_checked": datetime.datetime.now(),
} for f in jsonl_files}

with open(state_file, "w") as f:
return json.dump(state)

return state

def update_state(folder_path: str, filename: str, **kwargs):
all_state = get_state(folder_path)
for kwarg_name, kwarg_value in kwargs.items():
all_state[filename][kwarg_name] = kwarg_value

all_state[filename]["last_checked"] = datetime.datetime.now()

state_file = os.path.join(folder_path, UPLOAD_STATE_FILENAME)
with open(state_file, "w") as f:
return json.dump(all_state)

def get_total_space_usage():
return sum(file.size for file in client.files.list())

def get_estimated_space_usage(folder_path):
all_states = get_state(folder_path)
return sum(s["size"] for s in all_states.values() if s["state"] == "processing")

def get_next_work_item(folder_path):
all_states = get_state(folder_path)
all_states = [s for s in all_states if s["state"] not in FINISHED_STATES]
all_states.sort(key=lambda s: s["last_checked"])

return all_states[0] if len(all_states) > 0 else None



# Main function to process all .jsonl files in a folder
def process_folder(folder_path: str, max_gb: int):
output_folder = f"{folder_path}_done"
os.makedirs(output_folder, exist_ok=True)

starting_free_space = MAX_OPENAI_DISK_SPACE - get_total_space_usage()

if starting_free_space < max_gb * 2:
raise ValueError(f"Insufficient free space in OpenAI's file storage: Only {starting_free_space} GB left, but 2x{max_gb} GB are required (1x for your uploads, 1x for your results).")

while not all(state["state"] in FINISHED_STATES for (file, state) in get_state(folder_path)):
work_item = get_next_work_item(folder_path)
print(f"Processing {os.path.basename(work_item['file'])}, cur status = {work_item['state']}")

# If all work items have been checked on, then you need to sleep a bit
if work_item["last_checked"] > datetime.datetime.now() - datetime.timedelta(seconds=1):
time.sleep(1)

if work_item["state"] == "init":
if starting_free_space - get_estimated_space_usage(folder_path) > 0:
try:
batch_id = upload_and_start_batch(work_item["filename"])
update_state(folder_path, work_item["filename"], state="processing", batch_id=batch_id)
except:
update_state(folder_path, work_item["filename"], state="init")
else:
print("waiting for something to finish processing before uploading more")
elif work_item["state"] == "processing":
batch_data = client.batches.retrieve(work_item["batch_id"])

if batch_data.status == "completed":
batch_id, success = download_batch_result(work_item["batch_id"], output_folder)

if success:
update_state(folder_path, work_item["filename"], state="completed")
else:
update_state(folder_path, work_item["filename"], state="errored_out")

client.files.delete(batch_data.input_file_id)
client.files.delete(batch_data.output_file_id)
elif batch_data.status in ["failed", "expired", "cancelled"]:
update_state(folder_path, work_item["filename"], state="errored_out")

try:
client.files.delete(batch_data.input_file_id)
except:
print("Could not delete old file data")


if __name__ == "__main__":
# Set up argument parsing for folder input
parser = argparse.ArgumentParser(description='Upload .jsonl files and process batches in OpenAI API.')
parser.add_argument("--max_gb", type=int, default=25, help="Max number of GB of batch processing files to upload at one time")
parser.add_argument('folder', type=str, help='Path to the folder containing .jsonl files')

args = parser.parse_args()

# Process the folder and start batches
process_folder(args.folder, args.max_gb)

0 comments on commit e87729a

Please sign in to comment.